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Abstract
Measuring the world around us is necessary to observe and understand the changes
that occur in our environment. A widely distributed network of measurement
stations can help us to understand ongoing and predict future climate change.
GNSS reflectometry has the capacity of providing data from all over the world, as
there are already many GNSS stations established and operated for navigational and
meteorological purposes. This thesis presents a new way of retrieving environmental
data from GNSS signal-to-noise ratio measurements which has the capability to
provide new types of measurements. The method is based on inverse modelling
of the signal-to-noise ratio in order to retrieve physical parameters of reflecting
surfaces around GNSS installations. It is successfully demonstrated that the
method improves the precision of the GNSS reflectometry derived sea surface
height measurements significantly. By using the signal-to-noise ratio pattern, it
is also — for the first time — demonstrated that it is possible to use GNSS
reflectometry to detect coastal sea ice.
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Nomenclature
Ci,1, Ci,2 In-phase and quadrature amplitudes of SNR oscillations
γ Damping coefficient
λ Wavelength
k Wave number: k = 2π

λ
s Surface standard deviation
φ Interferometric phase delay
ϕ Phase shift of the SNR oscillations
ε, ε̇ Satellite elevation angle and its time derivative
x Sine of elevation angle: x = sin ε
h, ḣ Reflector height and its time derivative
Pd, Pr, P Direct, reflected and total received power at the antenna
RC , RX Fresnel reflection for co- and cross-circularly polarised signals
GR, GL Antenna gain for right and left hand circularly polarised signals
ΦR, ΦL Phase delays from antenna patterns
X Coupled antenna-surface vector
S Coherence factor
Nj B-spline nodes

Abbreviations

GLONASS Globalnaja Navigatsionnaja Sputnikovaja Sistema
GNSS Global Navigation Satellite System
GNSS-MR GNSS multipath reflectometry
GNSS-R GNSS reflectometry
GPS Global Positioning System
GTGU GNSS Tide Gauge Up
GTGD GNSS Tide Gauge Down
IGS International GNSS Service
SMHI Swedish Meteorological and Hydrological Institute
SNR Signal-to-noise ratio
SSH Sea surface height
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Chapter 1

Introduction

Observing our environment is important for the understanding of changes that
occur around us due to natural variations as well as anthropogenic influence. To be
able to state that the climate has changed, climatologists require long time series
to average out any short-term temporary fluctuations. Typically, the time series
lengths should be at least on the order of many decades to be useful as credible
evidence for any climate change.

Among the scientists that rely on really long and stable time series are geodesists
that study Earth’s shape, rotational behaviour, and gravity field. They require
multi-decade measurement series, with no change of equipment, in order to observe
the slow motion of the crust. The field of GNSS reflectometry draws from both of
these fields: using geodetic instruments to measure parameters with relevance to
climate research.

1.1 Outline of the Thesis

The following parts of this chapter provide a short introduction to Global Navigation
Satellite Systems (GNSS), and how one can benefit from using already existing
systems for new research purposes. Chapter 2 explains the concept of GNSS
reflectometry and introduces our new inverse model algorithm, Chapter 3 gives
a very brief summary and outlook, and finally Chapter 4 introduces the papers
on which this thesis is based. Chapter 1 is targeted towards a reader with an
interest in science and technology, while Chapter 2 and onwards may require a
basic background in engineering and/or physics.

1.2 Global Navigation Satellite Systems

Global Navigation Satellite Systems – GNSS for short – is a collective term for
all satellite systems used for positioning, navigation, and timing. These satellite
systems are used both for everyday purposes, such as positioning your phone or
your car, but also for more precise applications, such as monitoring very small
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Figure 1.1: The International GNSS Service network (Dow et al., 2009) collects
data from national networks around the world and distribute it publicly. Illustration
taken from the IGS webpage1.

changes and movements of the crust of Earth. They also play a crucial role in the
internet infrastructure, by providing time references to users all around the world.

The term GNSS encompasses several satellite systems operated by different
entities: the widely known Global Positioning System (GPS) which is operated by
the US government, the Russian system Globalnaja Navigatsionnaja Sputnikovaja
Sistema (GLONASS), China’s BeiDou system, and since recently the European
constellation Galileo which is the only fully civilian system. In addition, there are
two systems with only regional coverage over India and Japan, respectively. The
various systems operates on slightly different principles, but common to all of them
is that they consist of several satellites orbiting Earth while broadcasting their
position and clock information. As a very simplified description, the systems are
used by determining the distance to at least four satellites to estimate the position
and time of a receiver. At least four measurements are needed as there is four
unknowns: position in three dimensions and time.

Currently there are more than 70 satellites distributed among the four global
GNSS systems, and at most locations around the world there are usually more than
ten satellites in view unless buildings or other tall structures are obstructing the
sky. This means that it is possible to determine the position of a receiver anywhere
in the world. Each system broadcasts several signals on different frequencies. Some
of the signals that are broadcast from the satellites are encrypted, but most are
freely available and accessible to anyone.

Around the world there exist many permanent station networks, such as the
network coordinated by the International GNSS Service (IGS) shown in Figure 1.1.

1https://igscb.jpl.nasa.gov/images/maps/all_world_clean.png, accessed 30 June 2016.
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Figure 1.2: The GTGU/GTGD research installation at the Onsala Space Observa-
tory, Sweden, consisting of two permanently operating antenna/receiver pairs.

Among other purposes, these are used to monitor the movement of the continents
and to provide a common position reference for users around the globe. The data
collected by these networks are often freely available for everyone. As such they
constitute a very large open dataset for anyone to analyse.

1.3 GNSS Reflectometry in a Nutshell

The simplified description of the principle of GNSS is of course very idealistic.
In reality, there are several different error sources that affect the measurements
of the distances to the satellites, and that have to be accounted for with various
approaches. However, as it turns out, one of these error sources is actually the
signal that we use for GNSS reflectometry.

Central to the method presented in this thesis is that GNSS satellites transmit
electromagnetic signals on radio frequencies. This means that these signals are
reflected off most surfaces found in nature. Therefore, there is not only one copy
of the signal that reaches the antenna; the antenna receives both the signals that
come directly from the satellites, and also the signals that have been reflected, and
both of them affect the receiver tracking.

In short, the idea is that since GNSS signals are affected by so called multipath
– reflections from surfaces surrounding a receiver – the sum of the direct and the
reflected signal contains information about the objects causing the multipath effect.
This information can be used to measure for example sea surface height, soil

3



Figure 1.3: The Super Mareograph at the Onsala Space Observatory. Inside the
stilling well there are four instruments — two pressure sensors, one radar, and
one laser — measuring the water level continuously. A third pressure sensor is
mounted outside the well.

moisture, ice coverage, and snow height, all of which will be described in more
detail in the following chapters. Important is that the method discussed in this
thesis uses unmodified commercially-of-the-shelf GNSS receivers, such as the ones
used for plate tectonic studies or regional reference station networks. This means
that GNSS stations that are constructed for different purposes can directly be used
for GNSS reflectometry without modification. Together with the large number of
GNSS stations with public data around the world, the technique provides us with
a large dataset that can be analysed.

1.4 The GTGU Research Installation

The Onsala Space Observatory hosts a special GNSS installation built specifically
for GNSS reflectometry (Löfgren et al., 2011b), see Figure 1.2. This installation
is used as a test bed for water related GNSS reflectometry measurements under
ideal and controllable conditions. The installation consists of two GNSS antennas
mounted on a beam over the sea surface. This results in an ideal view of the water
surface, with very few obstructions affecting the measurements. The antennas are
also mounted with the sea to the south, and as they are situated on the west coast
of Sweden at 57 ◦N, most satellite passages occur to the south, i.e. over the water
surface. The two antennas are mounted so that one is pointing upward, named
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GTGU, and the other one straight down, named GTGD. They are also sensitive to
different polarisations, where the upward facing antenna is sensitive to right-hand
circular polarisation, and the downward looking antenna is sensitive to left-hand
circular polarisation. As the signal from the satellites are predominantly right-hand
circularly polarised, this configuration makes GTGU sensitive to direct signals, and
GTGD to reflected signals which change their polarisation in the reflection.

Close to the GTGU/GTGD installation, there is a traditional high precision
tide gauge (Figure 1.3), measuring the sea level inside a stilling well. This tide
gauge is part of the sea level monitoring network of the Swedish Meteorological
and Hydrological Institute (SMHI) and can be used as a reference which allow us
to evaluate the precision of GNSS reflectometry algorithms.

From measurements with the tide gauge we know that the tides at Onsala are
moderate. Typically the tidal variation is around 20 cm to 30 cm. However, local
weather conditions, such as pressure and wind, are the dominant effects at the
location and can cause additional vertical sea surface displacements from 1 m below
to 2 m above the mean sea level.
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Chapter 2

GNSS Reflectometry

The field of GNSS reflectometry started in 1993 under the concept name of PARIS,
A Passive Reflectometry and Interferometry System (Martin-Neira, 1993). At the
time it was only used to describe GNSS-R observations from satellite platforms for
ocean altimetry and for ocean wind determination (Garrison et al., 1998). Later
on, ground-based applications for GNSS reflectometry were explored under two
main concepts, either by measuring time of flight differences for the direct and
reflected signal with dedicated hardware (Fabra et al., 2012; Martin-Neira et al.,
2002) or by observing the effect of multipath on the signal-to-noise ratio using
only an unmodified antenna and receiver (Anderson, 2000; Larson et al., 2008a).
The work in this thesis is focused on the latter concept which will be described in
detail in this chapter. However, for completeness and comparison, the conceptually
simpler method using dedicated hardware will also be introduced.

2.1 Dedicated GNSS-R Instruments

GNSS receivers determine their main observable, the pseudo-range to the satellite,
by correlating the received signal to a locally generated copy of the transmitted
code to determine the delay between transmission and reception, i.e. the time
of flight. In dedicated GNSS-R instruments, the replica code is also correlated
against the reflected signal. This can be achieved in two ways: if the antenna is
mounted sufficiently high the delay between the direct and reflected signal is large
enough that both signals can be clearly distinguished using a purposefully built
receiver (Martin-Neira et al., 2001). Or if two antennas are used, one of them
can be designed to be sensitive to the direct signals and the other to the reflected
signals (Martin-Neira et al., 2002). Of these two methods, the latter is the more
common as it allows operation at low antenna heights, even down to a few meters.
In that configuration there is one antenna pointing toward zenith that is susceptible
for right hand circularly polarised signals, and a tilted antenna susceptible to left
hand polarisation.

By comparing the time of flight of the direct and reflected signals the path
delay is retrieved. To couple this path delay to a reflector height is then just pure

7



Figure 2.1: Schematic drawing of the installation required for phase delay measure-
ments. Because of the distance to the satellites relative to the reflector height, the
incident wave can be assumed planar at the receiver.

geometry. Referring to Figure 2.1 for the notation, the height h can be retrieved
as:

h = 1
2

(
a− b
sin ε + d

)
, (2.1)

where a− b is simply the measured path difference between the two signals.
The method requires that both the zenith-looking and the nadir-looking antenna-

receiver pairs are able lock on to the transmitting GNSS satellites. If the sea surface
becomes too rough, for example because of wind conditions, the nadir looking
system can loose track of the satellite signals (Löfgren et al., 2011a), which is a
major drawback for the technique in non-optimal locations.

2.2 Interference Pattern Analysis

In contrast to the dedicated GNSS-R measurements, the technique varyingly called
GNSS multipath reflectometry (GNSS-MR) or interference pattern analysis relies
only on one commercially-off-the-shelf GNSS receiver using the data it collects in
standard operation. In addition to information about the distance to a specific
satellite, commercial receivers are also able to record the signal-to-noise ratio (SNR),
which is roughly proportional to the signal power. Because of coherent reflections,
the direct and reflected signals are added according to the phasor diagram presented
in Figure 2.2. Vd and Vr are the complex voltages of the two signals, and V the
complex voltage of the combination. Since the power is proportional to the square
of the voltage, P = V 2, the composite power of the direct and the reflected signals

8



Figure 2.2: Phasor diagram for the combination of the direct and reflected signal,
where Vd and Vr are their respective complex voltages, and V is the voltage of the
combined signal. I and Q refers to the in-phase and quadrature channels of the
GNSS tracking loop.

becomes (Georgiadou and Kleusberg, 1988)

P = Pd + Pr + 2
√
PrPd cos(φ), (2.2)

where the subscripts r and d denotes reflected and direct signals respectively. φ is
the interferometric phase, i.e. the phase delay between the two signals. Intuitively
this will depend on geometry as longer excess path means larger phase delay, but
dielectric properties of the reflector will also affect the phase difference.

Generally, the extra path length travelled by the reflected signal can be described
for an antenna mounted above a flat, tilted plane as

τ = 2h′ sin (ε− α) = 2h sin (ε− α)
cosα . (2.3)

In the equation, h is the vertical distance from the antenna to the plane, α is the
plane tilt angle, and ε is the satellite elevation angle as depicted in Figure 2.3.
However, a common assumption in GNSS reflectometry is that the reflecting surface
is horizontal, i.e. α = 0. This is usually a good assumption for sea surfaces, at
least locally, and works for many land applications over for example crop fields
as well (Larson et al., 2008b). The assumption of horizontal reflectors reduces
Equation (2.3) to

τ = 2h sin ε. (2.4)
The phase delay depends on the wavelength of the signal, and can be written as

φ = 2π
λ
τ. (2.5)

9



Figure 2.3: Schematic drawing for the interference pattern analysis with a tilted
reflector. Both α and ε are considered positive if the slope is positive with increasing
distance from the antenna.

Thus the total interferometric phase becomes

φ = 4πh
λ

sin ε+ ϕ, (2.6)

where ϕ has been added to account for material properties of the reflector that can
cause additional non-geometric phase delays. By combining Equations (2.2) and
(2.6), it is evident that the signal-to-noise ratio, which is defined as received power
over noise power, will contain information about the position of the reflector in
relation to the antenna.

To extract the interesting information out of the raw signal-to-noise ratio data,
it is often divided into two components, SNRt and δSNR, i.e.

SNR = SNRt + δSNR. (2.7)

The first term describes a long period trend, as a result of the antenna gain
pattern and atmospheric attenuation, and thus contains no information about the
reflector. The δSNR component on the other hand comes from the oscillating part
of Equation (2.2) which depends on the reflector. Therefore the signal-to-noise
ratio can be detrended using a low degree polynomial to remove the influence
of SNRt and to focus only on the information carried in the oscillations. Both
the oscillatory behaviour and the trend of the signal-to-noise ratio are shown in
Figure 2.4.

After the signal has been detrended, only the oscillating part δSNR remains.
From Equation (2.6), it is clear that the oscillations contain information about the
reflector height. We can differentiate the interferometric phase in Equation (2.6)

10



Figure 2.4: The signal-to-noise ratio consist of an overall trend and the superimposed
multipath interference. The data shown here was collected during an arbitrary
satellite passage at GTGU at the Onsala Space Observatory, Sweden

with respect to sin ε to obtain

∂ φ

∂ sin ε = 4πh
λ
. (2.8)

This means that the frequency of the oscillations with elevation, or rather with
respect to the sine of elevation, is directly dependent on the reflector height. Thus,
in a sin ε-spectra of δSNR, there will be a clear peak corresponding to the vertical
distance to the surface, assuming that the signal is only affected by a single
horizontal multipath source.

Because the signal becomes unevenly sampled in sin ε, standard Fourier trans-
form algorithms do not work without applying techniques such as re-sampling,
which tend to create artificial fringes. Instead, Lomb-Scargle analysis is commonly
used to retrieve the power spectrum. Figure 2.5 shows two such spectra for differ-
ent times of the same day, where the frequencies have already been converted to
reflector heights. In the time between the two spectra the sea surface increased by
about 35 cm according to a nearby tide gauge, which corresponds roughly to the
observed frequency shift respectively height.

In the derivation of Equation (2.8), several assumptions are made. Most
importantly that the height is constant during the period of the analysed satellite
passage. For sufficiently small tidal variations, or for semi-static applications such
as snow height measurements, the assumption does not affect the retrieved reflector
height very much. However, for example at coastal locations with large variations
of the sea surface height, the change of height will have a non-negligible effect
(Larson et al., 2013). Instead of the oscillation frequency in Equation (2.8), we

11



Figure 2.5: Two Lomb-Scargle power spectra from GTGU in Onsala, at Dec. 23,
2015. The nearby tide gauge reports a difference of roughly 35 cm between the two
measurements.

introduce h→ h(t) and obtain

∂ φ

∂ sin ε = ∂ φ

∂ t

∂ t

∂ sin ε = 4πh
λ

+ 4πḣ tan ε
λ ε̇

, (2.9)

where ε̇ and ḣ are the time derivatives of the reflector height and the satellite
elevation respectively. Of these, ε̇ is a known value, since the satellite orbits are
known to a sufficient accuracy. However, ḣ is unknown. This means that the
reflector height cannot be directly retrieved from the power spectra, as the equation
contains two unknowns. The problem is solved by noting that the first term in
Equation (2.9) is the same term as in Equation (2.8). Therefore, the height and
change rate is retrieved iteratively by first calculating the reflector heights under
the assumption of a static reflector, then using the calculated heights to estimate
the change rate which in turn is used to correct the retrieved heights (Larson et al.,
2013; Löfgren et al., 2014).

2.3 Inverse Modelling

The new method presented in this thesis is based on the interference pattern
method, i.e. using the oscillating part of the signal-to-noise ratio as the input data.
But instead of using spectral analysis to retrieve reflector height we apply inverse
modelling. To motivate the method we start by noticing that the Lomb-Scargle
analysis focuses solely on the interferometric phase of the signal-to-noise ratio,
treating the oscillations as pure sine waves. However, from Figure 2.4, it is evident
that other elevation dependent effects are involved since the oscillations disappear

12



Figure 2.6: Specular reflections are visible for example when the sun is near the
horizon, as in this photo from the harbour of Vr̊angö, Sweden. The dependence of
the diffusive scattering on the roughness can also be seen in the photo.

above a certain elevation. The amplitude depends on the received reflected power,
i.e. Pr in Equation (2.2). According to Nievinski and Larson (2014b), this term
can be written as

Pr = Pd |X|2 S2. (2.10)
As before, Pd is the direct incident power. X is a complex vector describing the
effects of both the antenna and the reflector, and S represents the loss of coherence
from scattering on a rough surface.

The scatter of a radio signal on a surface can be divided into specular reflection
and diffuse scattering. Specular reflections can be compared to mirror reflections,
i.e. a reflection that retains all information of the incident signal. Diffuse scattering,
on the other hand, are reflections in which the coherency of the signal is lost. As
GNSS reflectometry requires a coherent reflected signal for interference with the
direct signal, only the specular reflections contribute to the retrieved information.

According to Beckmann and Spizzichino (1987), the loss of coherence from
reflections on a horizontal surface with some roughness can be described as
Pcoherent = S2Pincident, where

S = exp
(
−4k2s2 sin2 ε

)
. (2.11)

Here we have used the wave number k = 2π/λ for brevity. The roughness of the
surface is parametrised by the standard deviation s of its surface height. In coastal
applications this would typically be the roughness caused by wind driven waves.

13



From Equation (2.11) it can be noted that the coherence of the reflected signal
decreases with elevation, i.e. multipath interference is most prominent at low
elevations. This is the same behaviour as seen in Figure 2.4 where the oscillations
disappear when the satellite rises above about 15◦ elevation.

The middle term of Equation (2.10), X, considers both the directional depen-
dency of the antenna gain as well as dielectric properties of the reflecting surface.
More specifically it depends on the elevation dependent Fresnel reflection coeffi-
cients. Assuming a purely right hand circularly polarised incident wave, X can be
rewritten as (Nievinski and Larson, 2014b)

X = RC
√
GR exp

(
iΦR

)
+RX

√
GL exp

(
iΦL

)
. (2.12)

RC and RX are the co- and cross-circular Fresnel reflection coefficients, GR and GL
the antenna gain for the two circular polarisations, and ΦR and ΦL the phase delays
caused by the antenna. Therefore, due to the depolarisation caused by the reflection,
the effects of the antenna and the surface will be mixed and inseparable even if the
incident wave is purely right hand circularly polarised. To accurately model X the
antenna gain pattern must be known for the specific antenna configuration. As
this can vary significantly between different installations, and accurate antenna
gain patterns are not available for all stations, the effect will not be explicitly
modelled in the following, implicitly assuming X = 1. Therefore, care must be
taken when interpreting any other elevation dependent effects, such as the coherence
loss because of roughness.

Inserting the interferometric phase of Equation (2.6) and the expression for the
reflected power in Equation (2.10) into Equation (2.2) gives the following expression
for the oscillatory part of the signal-to-noise ratio:

δSNR = 2Pd S cos
(

4πh
λ

sin ε+ ϕ

)
, (2.13)

where we, as previously mentioned, have omitted the effect of the Fresnel coefficients
and the antenna gain. This formula is the basis for the inversion of GNSS signal-to-
noise ratio data. The model is depicted together with measurements in Figure 2.7.

In order to be able to invert the δSNR observations more assumptions are
necessary. First, we assume that the directly received power is constant over a
whole inversion period, which follows from the constant power output from the
GNSS satellites. Secondly, we have to make an assumption about the offset ϕ. This
assumption will be different depending on environmental conditions, but for sea
surface retrieval can assume that this property is also constant in time, as the phase
offset is mostly dependent on the dielectric properties of the reflector (Larson et al.,
2008a; Nievinski and Larson, 2014a). For cases when the reflecting material is not
constant, ϕ can instead be implemented as a time dependent function. Finally,
as the main usage of GNSS reflectometry in this thesis concerns the retrieval of
sea surface height, which is continuously changing over time, the height will be
implemented as a B-spline function. This will be described in more detail later in
this chapter.
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Figure 2.7: Detrended signal-to-noise ratio measurements as well as the modelled
values using Equation (2.14). The data used in the figure comes from the same
satellite passage as the data in Figure 2.4.

For numerical stability, the amplitude and phase will instead be implemented
as the in-phase/out-of-phase components C1 and C2. Also, instead of modelling s,
the square will be used directly γ = s2. This is also to stress that the values for
damping do not directly correspond to the roughness, as the unmodeled antenna
gain pattern will also affect the retrieved values. With these considerations, the
inversion model of Equation (2.13) can be implemented as:

δSNR =
(
Ci,1 sin

(
4π(h− δhi)

λi
sin ε

)
+ Ci,2 cos

(
4π(h− δhi)

λi
sin ε

))
× exp

(
−4k2

i γ sin2 ε
)
.

(2.14)

The offset δh is added as the phase centre of an antenna and its geometrical centre
is not the same. The magnitude of δh depends on the frequency of the signal and
is for most antennas a known quantity.

The variables in Equation (2.14) with i as a subscript denote quantities which
are dependent on the satellite system and transmission frequency, i.e for example
the GPS L1 frequency and the GLONASS L2 frequency. These are variables that
either have a physical difference between different frequencies, i.e. λ and k, or which
are different by system design. The variables h and γ, which relate to geometrical
properties of the surroundings of the GNSS receiver, are however independent of
the GNSS system and frequency and can therefore be shared by all measurements.

The system independent variables, i.e. reflector height and the damping pa-
rameter, allow us to use all available satellite measurements at a given time to
retrieve the reflector height, regardless of the source. Moreover, as the height is
implemented as a function of time, it is possible to use data from a longer time
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span in one inversion. In doing so we can use the knowledge that the sea surface
height changes smoothly in order to stabilise the solutions. The time dependence
of the function also implicitly solves the problem of ḣ described in Section 2.2.

2.3.1 Representing Height as Time Dependent B-spline
The possibility to use a time dependent reflector height is the main feature that
distinguish the inversion method from for example Lomb-Scargle analysis. Whereas
the latter retrieves reflector heights for each individual satellite passage indepen-
dently, the usage of some continuous function allows us to restrict the solution
to physically reasonable height variations. For example, we know that the sea
surface height changes smoothly, and that on many locations the change is bound
to the tidal cycle with some typical time scales of the variation. If desired, such
information can be included in the choice of parametrisation of the height function,
or the function can be kept more general. Also, a time dependent h makes the
method inherently correcting for the change in the δSNR oscillation frequency
that occurs during a satellite passage. In contrast, Lomb-Scargle analysis needs to
adjust for a non-static reflector height using correction terms, as described in the
previous section.

Here we will use B-spline functions to represent the time varying reflector height.
B-spline functions are constructed from zero-degree basis functions defined as

N0
j (t) =

{
1 if tj ≤ t < tj+1
0 otherwise . (2.15)

B-spline basis functions of higher order r can be recursively computed by the
relation

Nr
j (t) = t− tj

tj+r − tj
Nr−1
j (t) + tj+r+1 − t

tj+r+1 − tj+1
Nr−1
j+1 (t). (2.16)

With these basis functions sea-surface height variations can be represented as

h(t) =
n−1∑
j=0

hjN
r
j (t), (2.17)

where the node values h0 . . . hn−1 are retrieved from the signal-to-noise ratio data
through inverse modelling.

The time scale that can be resolved is decided only by the number – or rather the
density – of the basis nodes. The order of the B-spline basis functions determines the
degree to which the function is continuously derivable. For sea surface applications
we only make the assumption that the change rate is continuous so that the height
function is twice derivable, i.e. B-spline order r = 2.

An important feature of B-spline functions is that they are obtained as a linear
combination of the basis functions and node values as denoted in Equation (2.17).
Therefore it is straightforward to evaluate the continuous function at any given
epoch while only dealing with a relatively small number of coefficients. Moreover,
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Figure 2.8: Example of how B-splines can represent sea surface height by adding
nodes with different scaling.

the linearity of Equation (2.17) makes it easy to estimate the coefficients by least-
squares methods. And as the model in Equation (2.14) already contains several
non-linear functions, avoidance of unnecessary non-linearities is beneficial for the
convergence of the inversion process.

2.3.2 Retrieval Procedure

To analyse the signal-to-noise ratio data it is important to understand which data is
relevant for the inverse modelling. For most GNSS antennas there is only a limited
view of the object of interest, for example the sea surface. Therefore, a sky mask is
applied so that only measurements from directions in which water is known to exist
are considered. Similar to the Lomb-Scargle analysis, before the signal-to-noise
ratio data is analysed with inverse modelling the trend of the signal is removed using
a low-order polynomial, since Equation (2.14) only describes the oscillating part
of the measurements. Then, to retrieve the reflector height and other properties
from the data, the model described by Equation (2.14) is fit to the measurements
using least-squares adjustment. The parameters in the estimation process are
[C1,1, C1,2, . . . , Cm,1, Cm,2, γ, h0, . . . , hn−1], so the total number of parameters
will be n+2 ·m+1, where m is the number of satellite systems in the analysis and n
the number of B-spline nodes. As GNSS receivers generally have a sampling period
of 30 s or less it is evident that the number of observations will greatly exceed
the number of parameters, making the problem ideal for least-squares methods.
However, the high non-linearity of the functional model in Equation (2.14) does
not allow for a classical least-squares solution. Instead, an iterative non-linear
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least-squares method needs to be applied, i.e. iteratively minimising

N∑
i=1
|f(C1,1, . . . , hn−1)− δSNR|2 . (2.18)

The MINPACK libraries (Moré et al., 1980), which are interfaced via the optim
package within the Python framework SciPy (Millman and Aivazis, 2011; Oliphant,
2007), provide a convenient and easy-to-use environment which has been used in
this work. Thus, inverse modeling of signal-to-noise ratio becomes possible even
when the relation between the model parameters and the observed variations is
highly non-linear.

As previously mentioned, a strength of the method is that measurements
from different epochs and different GNSS systems can be used simultaneously.
In principle, data from the whole analysis period can be analysed in a single
inversion process. However, in order to make the dataset computationally feasible
it is broken down into smaller pieces, and in our implementation we have chosen to
use a single day as the basic unit. To avoid fitting problems at the day boundaries
– which can happen if there is no data for a period around midnight – data from
the two surrounding days are also used. With this procedure, using three days
of data to compute one day of sea surface, we stabilise the B-spline solution and
avoid problems at the edges.

2.4 Applications of GNSS Reflectometry

Up to this point, most of the examples given in the thesis refer to the retrieval
of sea surface height, which have been the major focus in the development of the
inversion algorithm. However, there are also other usages of GNSS reflectometry,
such as snow height measurements, ice detection, and soil moisture measurements.
Some of these are conceptually very similar to sea height retrievals, while others
rely on other effects of the reflection. In this section a few usages will be described
and the performance of inverse modelling will be analysed and compared to spectral
analysis methods. The usages discussed will be sea level retrieval, ice detection,
and snow height retrieval. Sea level retrieval and ice detection are also more
extensively covered in the appended papers. GNSS-R has also been successfully
used to measure soil moisture (Larson et al., 2008a) and vegetation biomass (Small
et al., 2010). However, as these have so far not been tested with the inverse
modelling, they will not be discussed further here.

2.4.1 Sea Surface Height Measurements
A primary focus of GNSS reflectometry is to determine the sea surface height. The
long-term average sea surface height is naturally of interest for climate research, as
it is expected that the sea level will change drastically within the next century in
the context of global climate change. Accurate measurements of the sea surface
height are also important for more applied usages: for maritime transportation
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Figure 2.9: Comparison of tide gauge measurements and the two signal-to-noise
ratio based GNSS reflectometry methods at GTGU, Onsala. The mean of each
series is equalized to remove influences from different reference points.

planning it is important to know the navigable depth, and used at a dam the
technique could provide information on the amount of water in a reservoir.

For sea surface measurements it is important to distinguish between apparent
and real change. In some places around the world there is considerable post-glacial
land uplift, on the order of centimetres per year (Johansson et al., 2002). If this is
not taken into account properly it might appear that the sea surface is receding
while it is in reality rising, just because the land is rising faster. Therefore, for
long-term time series of the sea level it is important to consider the movement
of the measurement apparatus. Traditional tide gauges only measure the sea
surface height compared to a ground fixed measurement point, requiring another
instrument to measure the absolute movement of the installation itself. GNSS
reflectometry tide gauges, on the other hand, can measure their location with
respect to the international terrestrial reference frame directly when determining
the antenna position through GNSS positioning. Thus, it is possible to directly
tie their sea level measurements to an absolute sea surface height. Another major
benefit of using GNSS reflectometry for measuring sea surface is the price and ease
of installation in comparison to for example a stilling well. This could potentially
help in covering the parts of the world where tide gauge measurements are currently
unavailable, or only very sparse, i.e. in the southern hemisphere.

The primary concern in using GNSS reflectometry is the precision. Earlier
results from signal-to-noise ratio based GNSS reflectometry have shown differences
to co-located tide gauges with a standard deviation of 4 cm to 6 cm on an ideal
site with low tides and good view, depending on measurement period, and on the
order of several decimetres for sites with larger tides (Löfgren and Haas, 2014;
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Figure 2.10: Comparison of the standard deviation of the difference from tide
gauge data for different GNSS reflectometry methods and configurations at GTGU,
Onsala. Data from a 30 day period between day number 273 to 303 of the year
2012. Results for Lomb-Scargle analysis and dual-antenna phase delay analysis
come from Löfgren and Haas (2014).

Löfgren et al., 2014). Thus, a main objective in this thesis has been to increase
the precision of the sea surface height retrieval. This is the topic of Paper I and
Paper II.

In Figure 2.9 the tide gauge data is shown together with GNSS reflectometry
results from both the Lomb-Scargle analysis as well as from the inverse modelling
algorithm. From the figure it is clear that the inverse modelling follows the tide
gauge data well, and even small features in the sea surface height time series are
resolved, features which are not visible in the Lomb-Scargle data. This is even
more evident from Figure 2.10, where the precision of different GNSS reflectometry
algorithms are compared. The results in the figure show that inverse modelling
can increase the precision drastically for signal-to-noise ratio methods, reducing
the standard deviation from 4.0 cm to 1.4 cm at Onsala. As seen in Figure 2.10,
the inverse algorithm even outperforms the dual-antenna method (see Section 2.1),
which was previously the more precise method.

The stated accuracy of the reference measurements is 5 mm, and thus the
uncertainty of the measurements are on the same order of magnitude. Together
with the effect of averaging over longer time spans, this precision should allow
GNSS relectometry measurements to be usable for observations of changes to the
mean sea level. Especially as GNSS reflectometry has the inherent capability to tie
sea level measurements to the international terrestrial reference frame, accounting
for any local land uplift.
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Figure 2.11: Time series of damping values retrieved from the inverse modelling
algorithm, from GTGU during the winter of 2012, normalised with the mean of
a completely ice free period. The red line shows a one day moving average of the
air temperature, and the shaded area represents the period during which SMHI ice
maps show ice at Onsala.

2.4.2 Ice Detection

During the retrieval process in the inverse modelling, more parameters than just
reflector height are obtained. As explained in Section 2.3, these parameters also
map to physical features of the reflecting surface. In this section we will focus on
the damping parameter γ in Equation (2.14), which is affected by both dielectric
and geometric properties of the reflector. As described in Paper III, the physical
transition from water to ice affects exactly these properties, and thus the damping
parameter.

In Figure 2.11 a time series of the retrieved damping values from the winter
of 2012 is depicted. In the figure, temperature data and ice map data from the
Swedish Meteorological and Hydrological Institute (SMHI) are also shown. During
a completely ice free year, the normalised damping values stayed within the range
0.91 to 1.06. However, as seen in Figure 2.11, there is a significant drop in damping
during the winter of 2012. The drop happens a few days after the temperature
at the site has dropped below the the freezing temperature of sea water at the
Swedish west coast, i.e. −1.4 ◦C (Fujino et al., 1974). It also coincides with the
date when SMHI reports that ice formed on the sea in the area, marked by the
red shade in the figure. The damping then stays low for the whole period during
which the ice maps show ice coverage, returning to normal values only when the
ice disappears.

The correlation between the damping value and the ice maps shows that the
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Figure 2.12: Comparison of snow level retrieval at the P360 GNSS installation
through inverse modelling and the snow level reported by the GNSS-R based PBO
network using Lomb-Scargle analysis (Larson and Nievinski, 2013). For the inverse
modelling, the height is assumed to be constant for a retrieval cycle, as opposed to
sea level measurements where B-splines are used.

damping value is an excellent indicator for local sea ice coverage around a GNSS
installation. Therefore, a network of coastal GNSS stations in arctic and sub-arctic
regions could be used to monitor coastal sea ice extent, a region in which satellite
imaging often has too coarse resolution. This could provide valuable input data
to climate studies as well as for more practical problems such as transportation
planning.

2.4.3 Snow Depth Measurements
The snow cover constitutes an important part of the water cycle, storing water
during the winter and being the primary water source in many parts of the world
(Barnett et al., 2005). Therefore, it is important to study how the snow cover
fluctuates with seasons, and how it changes over longer time scales. Many of the
GNSS stations used for monitoring plate motion and land uplift are located in
regions where snow fall occurs during the winter. Therefore, being able to use these
as snow depth instruments gives access to a large set of automatically retrieved
data (Larson and Small, 2016).

Measuring snow depth with GNSS reflectometry is conceptually very similar
to measuring sea surface height. In both cases we are interested in the distance
between the reflector and the antenna. In the snow measurement case, this can
then be compared to the distance measured during the snow free season to deduce
how much snow has fallen. The main difference between the two applications
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is that snow does not experience tides and therefore we can use a much more
slowly varying height function, as in Figure 2.12, where the snow height is retrieved
once per day. However, one has to consider that snow depth can be directionally
dependent as the snow cover can be affected by local topography and composition.

Figure 2.12 depicts a qualitative comparison of snow heights retrieved by inverse
modelling and snow heights from the proven Lomb-Scargle based Plate boundary
observatory (PBO) snow retrieval (Larson and Nievinski, 2013). It can be seen
that the two time series mainly show the same behaviour, which proves that the
inverse modelling can also be useful for snow height retrieval. The small variation
in reflector height during summer is most likely due to vegetation variations. To
further analyse and evaluate the performance, more comparisons to ground truth
data are needed.
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Chapter 3
Summary and Outlook

The work in this thesis and the appended papers focuses on improving the retrieval
procedure in GNSS reflectometry. In the process we have found new measures of
the signal-to-noise ratio pattern that can be used to detect the presence of sea ice.
Continuing on this track we expect that there will be other analysis strategies yet to
be discovered as more effects are accounted for in the inverse modelling procedure.
To this end we will in the future focus on improving the method with for example
accurate models of the antenna gain pattern and the combined effect with the
Fresnel reflection coefficients. Other effects that will be of more importance when
the precision of the retrieved values increases may include the elevation dependence
of the antenna phase centre, which offsets the height measurements (Nievinski,
2013). Correct modelling of such effects would therefore increase the precision of
the algorithm further.
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Chapter 4

Summary of Appended Papers

This chapter briefly summarizes the main findings of the three papers upon which
this thesis is based.

4.1 Summary of Paper I: Inverse modelling of GNSS multi-
path for sea level measurements - initial results

In a previous study by Nievinski and Larson (2014a) a model for forward modelling
SNR measurements from multipath reflection was described. The model was
then later successfully used for retrieving snow heights from SNR measurements
(Nievinski and Larson, 2014b,c). However, on the relevant time scales, snow can
mostly be considered as a static surface without any height change. Therefore,
based on this forward model, we developed our own inversion algorithm for sea
surface height retrievals where we fit a functional model of the SNR variations over
elevations (see Section 2.3). In the model, the sea surface height is represented
as a B-spline function, which makes the method intrinsically able to handle tides
and other changes of sea surface height. In Paper I we introduce and test the
model at the GNSS reflectometry test installation GTGU, situated at Onsala Space
Observatory, Sweden.

4.2 Summary of Paper II: Improving GNSS-R sea level de-
termination through inverse modelling of SNR data

In the second paper we extend the description and analysis of the inverse model.
In Paper II, we also compare the performance of the inversion algorithm to the
commonly used Lomb-Scargle spectral analysis on two coastal GNSS installations
in Onsala, Sweden, and Spring Bay, Australia. We find that the new method has
better precision having a standard deviation of 1.4 cm at Onsala and 2.9 cm at
Spring Bay with respect to co-located tide gauges, less than half of the respective
values for the Lomb-Scargle method. With wavelet analysis we also confirm that
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the correlation between the tide gauge and the GNSS-R results are higher on all
time scales for the inversion algorithm.

Finally, we conclude that the inversion algorithm also outperforms sea height
retrievals based on the phase difference analysis. The phase difference method
tends to fail in situations with high wind speed and in general performs poorly in
terms of precision at moderate wind speeds.

With the increased precision and with their low maintenance needs, GNSS-R
becomes a more feasible alternative to traditional tide gauges. Especially as there
are already stations around the world that are close enough to the coast to be used
directly, so called accidental tide gauges.

4.3 Summary of Paper III: Coastal sea ice detection using
ground-based GNSS-R

In Paper I and Paper II we explored fitting a functional model to data for retrieving
sea surface height. However, height is not the only parameter in the fit. Therefore,
in Paper III, we examine how other parameters of the inversion model couple to
the physical parameters of the reflector. In particular we focus on winter periods
during which sea ice is formed.

As described in Section 2.3, the dampening parameter in the model is sensitive
to the roughness of the reflecting surface as well as the dielectric properties of the
surface material. In the Paper III we notice that the damping parameter fluctuates
around a stable value for most of the time. However, there are distinct periods
where the damping drops by more than 60 %. Using GNSS data from the three
winters of 2012, 2013, and 2016 together with temperature measurements and ice
maps from SMHI we find that there is a strong correlation between the periods
of low damping and the periods during which there is ice reported. Therefore, we
conclude that the damping parameter is a good indicator for the presence of ice
on the sea surface around a coastal GNSS-R installation. Finally, we also show
that there are signs of the ice state in the estimated oscillation amplitude as well,
although not as decisive as for the damping parameter.
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Löfgren, J. S., R. Haas, and H. G. Scherneck (2014). Sea level time series and ocean
tide analysis from multipath signals at five {GPS} sites in different parts of
the world. Journal of Geodynamics, 80. SI: Understand the Earth, 66–80. doi:
10.1016/j.jog.2014.02.012.

Martin-Neira, M. (1993). A passive reflectometry and interferometry system
(PARIS): Application to ocean altimetry. ESA journal, 17, 331–355.

Martin-Neira, M., M. Caparrini, J. Font-Rossello, S. Lannelongue, and C. S. Vallmit-
jana (2001). The PARIS concept: an experimental demonstration of sea surface
altimetry using GPS reflected signals. IEEE Transactions on Geoscience and
Remote Sensing, 39(1), 142–150. doi: 10.1109/36.898676.

Martin-Neira, M., P. Colmenarejo, G. Ruffini, and C. Serra (2002). Altimetry
precision of 1 cm over a pond using the wide-lane carrier phase of GPS reflected

30

http://dx.doi.org/10.1109/LGRS.2012.2236075
http://dx.doi.org/10.1109/JSTARS.2015.2508673
http://dx.doi.org/10.1109/JSTARS.2015.2508673
http://dx.doi.org/10.1007/s10291-012-0259-7
http://dx.doi.org/10.1029/2008GL036013
http://dx.doi.org/10.1007/s10291-007-0076-6
http://dx.doi.org/10.1029/2011RS004693
http://dx.doi.org/10.1186/1687-6180-2014-50
http://dx.doi.org/10.1016/j.asr.2010.08.015
http://dx.doi.org/10.1016/j.jog.2014.02.012
http://dx.doi.org/10.1109/36.898676


signals. Canadian Journal of Remote Sensing, 28(3), 394–403. doi: 10.5589/
m02-039.

Millman, K. J. and M. Aivazis (2011). Python for scientists and engineers. Com-
puting in Science & Engineering, 13(2), 9–12. doi: 10.1109/MCSE.2011.36.
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ABSTRACT

We present a new method to retrieve sea level from GNSS SNR
data that relies upon inverse modelling of the detrended SNR.
This method can simultaneously use data from both GPS and
GLONASS, and both L1 and L2 frequencies, to improve the
solution with respect to prior studies. Results from the GNSS-
R installation at Onsala Space Observatory are presented and
the retrieved sea level heights are compared with a co-located
pressure mareograph. The method is found to give an RMS
error of 1.8 cm. The results are also compared against previous
implementations of GNSS tide gauges and found to have lower
RMS than both the earlier SNR algorithm and also the dual
receiver, phase delay method.

Index Terms— GNSS-R, Inverse modelling, Reflectome-
try, Sea level, Tide gauge

1. INTRODUCTION

The idea that sea level measurements could be done passively
using available GNSS signals was proposed already over two
decades ago [1]. Since then several methods of using GNSS
signals for measuring sea level has been proposed, using var-
ious degrees of specialized equipment. The first conceived
ground based GNSS-R tide gauges use two receivers; one with
upward antenna looking receiving primarily direct signals, and
one with downward looking antenna receiving the reflected
signal. Using the difference in time delay between the signals
received by the two receivers, the height of the reflector surface
can be calculated.

However, it has also been shown that geodetic-class off-
the-shelf GNSS receivers can be used for sea height retrieval
without modification [2], using the signal to noise ratio (SNR)
of the GNSS satellites. Such stations are already installed
on many coastal sites, and have been so for some time, and
therefore their data could be used for calculating the sea level
for several years back in time. A drawback of this one-receiver
approach is its lower time resolution [2], but at the same time
the operation has been shown to be more reliable in high wind
conditions than two-receiver installations [3].

2. ONSALA GNSS-R INSTALLATION

The GNSS-R tide gauge at the Onsala Space Observatory was
installed in fall of 2011, and has been previously described [2].
The equipment at the site can perform both single and dual
receiver operation. During the time from which the GNSS
data were collected a pressure mareograph, with a nominal
uncertainty of 5mm, were available 10m from the GNSS-R
station, which is used as a reference for the GNSS-R tide gauge
implementations.

3. GNSS TIDE GAUGE

The SNR GNSS tide gauge builds upon using multipath effects
in GNSS signals to derive the sea height in the vicinity of the
GNSS receiver. The SNR of GNSS signals, which are affected
by interference from reflections, is dependent on the elevation
angle to the satellite. Therefore, as the satellite travels along
its arc, the SNR will create a characteristic oscillating pattern
overlaid on a long time trend [4].

The frequency of these oscillations depend on the height,
h, between the antenna and the reflecting surface. Removing
the trend from the SNR, the remainder can be modelled as [5]:

δSNR = A cos

(
4πh

λ
sin ε+ ϕ

)
e−K sin2 ε. (1)

Here, ε is the angle to the satellite measured from the horizon.
Noting that δSNR can be rewritten as a function of x =

sin(ε), previous efforts on SNR tide gauges have focused on
using spectrum analysis to find the main frequency in the
individual δSNR arcs, which corresponds to 4πh

λ . Since the
function is unevenly sampled in x, Fast Fourier transform
will not work, and an algorithm such as Lomb-Scargle must
be used to retrieve the power spectrum. In the original form
this assumes a stationary reflector surface for the whole arc.
For example this is reasonable in the case of snow height
measurements [6] and sea level measurements where the tidal
ranges are low [2]. For sites where the tidal range is too high
this model is too inaccurate since the reflector height changes
significantly during the arc, which introduces systematic error



depending on if the reflector height is rising or falling. To
compensate for this, some work has been done to provide a
correction term for the height change of the surface, which
accounts for a linear change in the reflector height [3].

3.1. Inverse modelling of GNSS SNR data

In the proposed method, the height is retrieved through inverse
modelling the δSNR by fitting a curve to it. Figure 1 depicts
the δSNR from one arc, and a fitted function using the process
described below. A similar procedure has been previously
used to measure snow height [7], however in that method the
reflector height was assumed to be constant, and only one
measurement was derived for each arc. In this work we will
model height as a time dependent function to account for
the changes in δSNR-frequency that occurs when measuring
changing water levels.
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Fig. 1. Detrended SNR from one arc (black), together with the
modelled δSNR (red).

From Equation (1) we see that we can model the δSNR
using only four parameters: the amplitude A, a phase offset ϕ,
a damping factor K, and the height h. Since ε in Equation (1)
is a function of time, we can also introduce time dependent
height h(t), and use t as our variable instead of x = sin(ε).
This allows the height of the reflector surface, and therefore
frequency of the δSNR, to change during the course of one
arc. Furthermore, instead of one single measurement of the sea
level per satellite arc the method gives a continuous function
for the height.

The height is modelled as a smooth function using a 2nd
order b-spline basis. The b-spline basis of degree r is defined
recursively using the node-points t0, ..., tn as [8]:

N0
j (t) =

{
1 iftj ≤ t ≤ tj+1

0 otherwise , (2)

Nr
j (t) =

t− tj
tj+r − tj

Nr−1
j (t)+

tj+r+1 − t

tj+r+1 − tj+1
Nr−1
j+1 (t). (3)

With these basis functions the height function is approximated
using the node heights h0, ..., hn:

ĥ(t) =
∑

j

hjN
r
j (t). (4)

Data from three consecutive days are used for fitting the
height function and the other parameters. However, only the
data from the middle day is used as the final solution. The
underlying fitting problem becomes highly non-linear because
of the form of Equation (1), and is solved iteratively using
numerical methods.

As already mentioned, our approach is able to use all arcs
during a chosen timespan to fit a continuous height function.
Worth noting is that this is not confined to arcs from a specific
GNSS system, or a specific frequency. It is possible to use
all available signals simultaneously, thereby increasing the
amount of data available for the fitting.

4. RESULTS AND COMPARISON

The number of nodes chosen for the b-spline approximation of
the height is important for a proper modelling of site specific
reflector height variations. If too few nodes are chosen, the
resulting height-function will not be able to resolve all tides,
but if too many nodes are used the function will instead be to
sensitive to outliers in the data set. For this implementation
37 evenly spaced nodes, i.e. a two hour separation, are used
for the whole three days that are processed simultaneously.
As shown in Figure 2, this gives the height function enough
resolution to resolve all but the most short time scale behaviour.
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Fig. 2. Sea level derived from inverse modelling the detrended
SNR, and the reference data from the on site mareograph for a
subset of the data used for validation. Since the mareograph
and the GNSS solution do not have the same reference level,
the mean of the two data sets are removed before plotting.

The derived sea level results were compared against the



Table 1. RMS difference and correlation between three different GNSS-R tide gauge implementations and the reference
mareograph at Onsala from doy 273 to doy 303, year 2012. The result of the Lomb-Scargle and the phase delay methods are the
best results gained for the respective method in the paper by [3].

Single receiver (SNR) Dual receiver

Inverse modelling (this paper) Lomb-Scargle [3] Phase delay [3]

GPS+GLONASS GPS GLONASS GPS, L1 GLONASS, L2

Correlation: 0.99 0.99 0.99 0.97 0.96
RMS error [cm]: 1.8 2.0 2.9 4.0 3.2
Mean diff. [cm]: 1.5 1.6 2.3 3.1 2.3

co-located pressure sensor by evaluating the final b-spline
function for the height at the time of all pressure sensor mea-
surements. For comparison, the chosen data set has previ-
ously been used for the Lomb-Scargle method and phase delay
method by [3]. The set is taken between day of year 273
and 303 in the year 2012. Since the GNSS-R tide gauge and
the pressure sensor measure with respect to different offsets,
the mean values of each time series are removed before the
comparison.

The results of the comparison are summarized in Table 1,
where the inverse modelling method is compared against the
best results of the Lomb-Scargle algorithm and phase delay
method. As can be seen from the table, the inverse modelling
represents a significant improvement in performance for the
single receiver operation, reducing the RMS error by more
than 50% and decreasing the mean difference to only 1.5 cm.

5. CONCLUSIONS

Inverse modelling for sea level retrieval has a potential to
increase the precision of GNSS-R tide gauges. It even outper-
forms the current dual receiver phase-delay method, without
the need for specialized equipment. This means that poten-
tially all GNSS receivers already installed near open water can
be used to retrieve sea level. Furthermore, since the method is
based on SNR analysis, it can continue to operate during high
winds, in which the phase delay algorithm fails to lock on the
satellites with the nadir looking antenna. This leads to a more
stable and reliable operation.

Another advantage of this new method is its high temporal
resolution; sea level values can be obtained at any time resolu-
tion depending only on the choice of the b-spline nodes. This
is in contrast to the sparsely sampled arc-wise solutions, with
a mean spacing of roughly half an hour, which earlier SNR
methods give.

The ability to use data from different GNSS systems is
also seen to increase the performance, further reducing the
RMS. Therefore, it is of interest to add other systems, such as
GALILEO and COMPASS, in the future.

However, to verify these results, the algorithm needs to be
tested on more GNSS installations and sites with varying tidal

behaviour and range.
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Abstract This paper presents a new method for retrieving sea surface heights from Global Navigation
Satellite Systems reflectometry (GNSS-R) data by inverse modeling of SNR observations from a single
geodetic receiver. The method relies on a B-spline representation of the temporal sea level variations
in order to account for its continuity. The corresponding B-spline coefficients are determined through a
nonlinear least squares fit to the SNR data, and a consistent choice of model parameters enables the
combination of multiple GNSS in a single inversion process. This leads to a clear increase in precision of
the sea level retrievals which can be attributed to a better spatial and temporal sampling of the reflecting
surface. Tests with data from two different coastal GNSS sites and comparison with colocated tide gauges
show a significant increase in precision when compared to previously used methods, reaching standard
deviations of 1.4 cm at Onsala, Sweden, and 3.1 cm at Spring Bay, Tasmania.

1. Introduction

Since it was demonstrated that reflected Global Navigation Satellite Systems (GNSS) signals can be used to
monitor local sea surface heights [Soulat et al., 2004], the concept has been attractive as it is relatively inexpen-
sive andeasy todeploy andoperate. Furthermore, theGNSS technology can relate the sea levelmeasurements
to a global reference frame, whichmeans that GNSS reflectometry (GNSS-R) can directly distinguish between
relative and absolute sea surface change, something traditional tide gauges cannot do without additional
equipment.

Various concepts exist for GNSS-R, and they can be broadly categorized into two groups—phase difference
analysis [Soulat et al., 2004; Löfgren et al., 2011] and signal-to-noise ratio (SNR) analysis [Larson et al., 2013].
The first technique uses two antennas to determine the difference in phase between the direct and reflected
signals and thereby their path length difference. The latter uses only a single antenna, instead analyzing the
SNRpattern from theGNSS satellites to determine the sea surface height. A benefit of using the SNRmethod is
greater robustness to wind and wave conditions [Löfgren andHaas, 2014], and it has also been demonstrated
that the method is useful for determining other important sea state parameters, such as significant wave
height [Alonso-Arroyo et al., 2015]. However, themethod has so far been less precise than the phase difference
analysis. Therefore, this paper presents a newalgorithm for retrieving sea surface heights fromGNSS SNRdata,
which increases the precision of single-receiver GNSS tide gauges.

2. GNSS-R and Sea Level

The recorded SNR at a ground-based GNSS station varies during a GNSS satellite passage. In general, the SNR
depends on different factors such as satellite signal strength, antenna gain pattern, and multipath environ-
ment. According to Nievinski and Larson [2014b], in case of a single multipath reflection, SNR (in watt/watt)
can be written as

SNR = Pd
(
1 + Pi + 2

√
Pi cos(𝜙i)

)
∕Pn + PIs∕Pn. (1)

Here Pd is the power received directly from the satellite, Pi is the relative interferometric power due to reflec-
tions, PIs is the incoherent signal power, and Pn is the noise power. Assuming a horizontal reflecting surface,
the interferometric phase 𝜙i can be written as

𝜙i =
4𝜋h
𝜆

sin(𝜀) + 𝜑. (2)
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Here h is the reflector height, i.e., the vertical distance from the phase center of the GNSS antenna to the
reflecting surface, 𝜀 is the elevation angle of the satellite, and 𝜆 its signal wavelength, while 𝜑 contains the
phase contribution of the antenna pattern and electromagnetic properties of the reflecting surface.

Focusing on the geometry-dependent part, SNR observations are usually divided into a trend, tSNR, which
mainly depends on the satellite elevation, and the oscillating part 𝛿SNR:

tSNR = Pd
(
1 + Pi

)
∕Pn + PIs∕Pn, (3)

𝛿SNR = 2Pd
√
Pi cos(𝜙i)∕Pn. (4)

Previous studies, for example, by Larson et al. [2013], have focused on the interferometric phase𝜙i for retriev-
ing sea surface heights through spectral analysis of 𝛿SNR. Following these studies, if we write 𝛿SNR as a
functionof x = sin(𝜀)by inserting the interferometric phaseof equation (2) into equation (4), and thenneglect
the elevation dependency of Pd , Pi , and 𝜑, we obtain

𝛿SNR = A cos
(4𝜋h

𝜆
x + 𝜑

)
, (5)

where A = 2Pd
√
Pi∕Pn becomes a constant factor. Therefore, the main spectral component can be translated

into a distance between the antenna and the sea surface.

However, the spectral method ignores effects of temporal reflector height variations. This is acceptable for
coastal sites with small tidal range, where the water level is relatively stationary during a satellite pass. But
for sites with large sea level variations a correction term must be added, for example, based on tidal models
[Löfgren and Haas, 2014]. Roussel et al. [2015] instead introduced a method based on the Lomb-Scargle inver-
sion that combines all available GNSS signals, by fitting h and dh

dt
to all satellites visible during ameasurement

time span. However, their study considers only a correction term for linear temporal changes of the reflector
height. In contrast to this, we present here an advanced method that directly accounts for temporal changes
in sea surface heights, by modeling height as a smooth function.

3. Advanced Sea Surface Height Retrieval by Inverse Modeling

In the present study we use inverse modeling, i.e., we fit an analytic function to measured 𝛿SNR oscillations.
Thus, we do not rely on spectral methods but use a physical model for the data analysis. Similar methods
have previously been used for snow depth estimation [Nievinski and Larson, 2014c], where single satellite arcs
were analyzed independently, assuming a static reflector height. In order to benefit from the sophisticated
properties of inverse modeling, and considering that sea surface height variations can be approximated as a
smooth process, we present an advanced method for sea surface height retrieval hereafter.

First, we extend the simplified form of equation (5) with an attenuation factor in order to account for the
decrease of the multipath oscillation amplitude with increasing elevation. The attenuation factor

S2 = e−4k
2s2 sin2(𝜀) (6)

relates to the interferometric power Pi of equation (4), where k is the wave number and s is the standard
deviation of the reflector surface height. This term accounts for loss of coherence in the reflected signal due
to surface random roughness [Beckmann and Spizzichino, 1963].

The oscillating part of the SNR will therefore be modeled as

𝛿SNR =
(
C1 sin

(4𝜋h
𝜆

x
)
+ C2 cos

(4𝜋h
𝜆

x
))

e−4k
2Λx2 , (7)

where in-phase/out-of-phase terms C1 and C2 replace amplitude and phase in equation (5) for numerical
stability during the inversion process. The termΛ = s2 is introduced for the same reason.

Conversion back to A and 𝜑 is achieved by the following basic relations:

A =
√

C2
1 + C2

2 , (8)
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Figure 1. Detrended SNR from a GLONASS L1 arc (black dots) at GTGU on day 263, 2015, together with the SNR pattern
obtained from inverse modeling (red line).

and

𝜑 = tan−1(C2∕C1). (9)

Now equation (7) combines geometric and radiometric information and represents a well-suited functional
model that enables sea surface height retrievals from the inversion of SNR data.

As discussed in the previous section, only 𝛿SNR is of interest for determining the sea surface height. Therefore,
only SNR measurements from directions toward open water are converted to linear scale (i.e. watt/watt) and
then detrended using a low-order polynomial. This ensures that signatures originating from antenna gain
pattern and other factors are removed to a large extent and that the observable of interest, 𝛿SNR, becomes
accessible for further data analysis. By using a nonlinear least squares algorithm (cf. section 3.2), an analytic
model is fit to the remaining oscillations, as shown in Figure 1.

For a particular coastal site one can assume that the amplitude, phase, and damping factors are constants or
slowly varying in time, while sea surface height usually varies more rapidly. According to Nievinski and Larson
[2014a], the amplitude is mainly influenced by satellite signal strength, receiver characteristics, and electro-
magnetic properties of the reflecting surface. These influencing factors can, in general, be assumed to be
constant over a few days. The phase 𝜑 is also dependent on the electromagnetic properties of the reflecting
surface, enabling us to treat it as constant over a few days. However, treating 𝜑 as a constant neglects non-
geometric elevation dependence of the phase, for example, from reflections and antenna patterns which can
lead to a bias in the retrieved reflector heights [Nievinski, 2013]. Correctmodeling of such effects would there-
fore further increase the precision of the algorithm. The damping relates to surface random roughness, which
is driven by average local wind speed and direction, and the shape of the coastline. In a first-order approxi-
mation we can also assume the damping to be constant over a few days. It is, however, important to notice
that unless antenna characteristics are modeled properly, the Λ = s2 parameter will include information not
only from the surface roughness but also from the antenna gain pattern. Therefore, care should be taken
when interpreting the values of this parameter. Modeling these properties as constants allows us to combine
data from several GNSS satellites, and even different systems, via the information implicitly shared through
common parameters.

For the coastal sites tested in this work, cf. section 4, this means that SNR measurements from both GPS and
GlobalNavigationSatellite System (GLONASS) satellites, and the L1andL2 frequencyof both systems, areused
in a consistent inversion process. To consider varying signal strengths and frequency-dependent reflection
phase offsets, both A and 𝜑, i.e., C1 and C2, are estimated per satellite system and wavelength, i.e., one set
for GPS L1 and one for GLONASS L1. The roughness parameter s is, however, not dependent on the signal,
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but rather on geometric properties of the reflector, and thus is considered as a single constant parameter.
Sea surface height information is also shared across all the satellite systems and wavelengths. However, the
sea surface height undergoes significant temporal changes. In order to handle this temporal variation, we
introduce a B-spline representation for the sea surface height, which is described in the next section.

3.1. Modeling Sea Surface Heights by B-Spline Functions
As discussed before, SNR interference patterns contain the necessary information to obtain geometric and
radiometric properties of the reflecting surface. Although arc-wise inversion, for example, by spectral meth-
ods [Larson et al., 2013], has been proven to be a powerful GNSS-R approach, it does not make use of the
knowledge that the estimated parameters are continuous. In particular, for GNSS-R sea level applications, we
assume that the sea surface varies as a smooth function which should therefore be included in the retrieval
process.

In principle, any analytic function that considers tidal and long-termvariations is sufficient to be implemented
in a straightforward inversion algorithm. Piecewise linear models might be the simplest functional approach
but lead to discontinuities at the nodes when computing first-order derivatives. As already discussed by
Hobiger et al. [2014] and Hobiger et al. [2016], B-spline functions can help to overcome such deficits while still
providing enough variability to consider the most dominant subdaily and long-term sea level variations. In
their basic form, B-spline functions are constructed from 0∘ basis functions which are defined as

N0
j (t) =

{
1 if tj ≤ t < tj+1
0 otherwise

, (10)

and B-spline basis functions of higher-order r can be recursively computed by the relation

Nr
j (t) =

t − tj
tj+r − tj

Nr−1
j (t) +

tj+r+1 − t

tj+r+1 − tj+1
Nr−1
j+1 (t). (11)

With these basis functions sea surface height variations can be approximated as

h(t) =
N∑
j=0

hjN
r
j (t) (12)

when node values h0, ..., hN are estimated from the SNR data. Herein, N + 1 denotes the total number of
nodes. Formost applications, quadratic or cubic B-spline functions are chosen to approximate signals that are
expected to be continuous in the first- or second-order derivatives. The capability of resolving certain spectral
features depends only on the temporal spacing of the nodes, which means that one can place more nodes
when expecting higher-frequency components or increase the temporal node spacing when dealing with
rather low-frequent signals. In this study, quadratic B-spline functionsN2

j (t) are used as the sea surface height
is assumed to be a smooth function.

An important feature of B-spline functions is that they are obtained as a linear combination of the basis func-
tions and node values as denoted in equation (12). Therefore, it is straightforward to evaluate the continuous
function at any given epoch while only dealing with a relatively small number of coefficients. Moreover, the
linearity of equation (12) makes it easy to estimate the coefficients by least squares methods.

3.2. Nonlinear Least Squares Parameter Estimation
Considering that amplitudes C1,i and C2,i , and the damping factorΛ, are estimated as constants over the time
span considered in the data analysis, the total number of parametersMT which needs to be estimated from a
consistent inverse modeling is

MT = MB + 2 ⋅Mf + 1, (13)

where MB denotes the number of B-spline nodes and Mf is the number of GNSS frequencies which are
used. Even with moderate sampling rates, e.g., a 30 s sampling interval, and a dense choice of B-spline
nodes, e.g., one per hour, it is obvious that the number of observations is much larger than the number of
unknowns which should be estimated. Therefore, one faces an overdetermined parameter estimation prob-
lem, which would be normally solved by least squares adjustment, i.e., finding an optimum set of parameters
x0, x1,… , xMT

, that minimizes the cost function

min
∑
N

(
yi − f

(
x0, x1,… , xMT

))2 , (14)
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whereN is the total number of observations and yi are SNRmeasurements. However, the high nonlinearity of
the functionalmodel (cf. equation (7)) does not allow for a classical least squares solution. Instead, a nonlinear
least squares method needs to be applied. The MINPACK libraries [Moré et al., 1980], which are interfaced via
the “optim” packagewithin the Python framework SciPy [Oliphant, 2007;MillmanandAivazis, 2011], provide a
convenient solution and easy-to-use environment which has been used in this work. Thus, inverse modeling
of SNR interference patterns becomes possible even when the relation between the model parameters and
the observed SNR variations is highly nonlinear.

3.3. Parametrization and Initial Conditions
In order to retrieve sea surface heights, it is important that the analyzed SNR patterns come from reflections
off the water surface. To ensure that only relevant reflections from water are analyzed, only directions where
the characteristic oscillating pattern is observed are considered in the analysis process. The process is fur-
ther described in Löfgren et al. [2014]. This results in station-specific azimuth/elevation sectors in which water
reflections are expected.

The choice of initial parameters in the nonlinear least squares estimation process is crucial. Especially, the
initial distance between the antenna and the sea surface is of importance, since it determines whether the
solver converges to the global or a local minimum. Therefore, the initial height should be chosen site specific,
using a representative value for the average antenna height above the sea level, setting all a priori B-spline
node values to this initial estimate. The other parameters,C1,C2, andΛ, are less sensitive to their a priori values
and do not need to be initialized site specific.

Another point of interest is the number of nodes used for the B-spline implementation, as it determines the
maximum temporal resolution of the solution. For a high temporal resolution a large number of nodes is
desirable; however, this will increase the computational load of the nonlinear least squares estimation and
may eventually degrade the final solution due to overfitting. Furthermore, the SNR data are not continuous,
and there are data gapswhen no satellites arewithin the azimuth/elevation sectors considered in the analysis
process. These periods without data impose a limit on the temporal resolution of the inversion process, since
all B-spline intervals must cover a time span with sufficient data. Thus, the B-spline intervals must be larger
than the longest gaps in the data set.

The B-spline solution can occasionally be unstable at the beginning or the end, especially if there are data
gaps. Therefore, we perform an inversion process with data from three consecutive days but select only the
results of the middle day. This processing scheme is applied to each day in order to obtain a smooth and
continuous time series of sea surface heights.

4. Testing and Validating the Method at Two Coastal Sites

The new method has been tested with data from the GNSS stations at Onsala (GTGU) at the Swedish west
coast and Spring Bay (SPBY) at the east coast of Tasmania, cf. sections 4.1 and 4.2. Both stations are located on
the coast and have a good view of open water. In addition, the two installations record SNR data from both
GPS and GLONASS with high temporal resolution. Moreover, both stations are colocated to tide gauges for
independent validation and have been previously used for GNSS-R-related studies.

4.1. Onsala GNSS-R Installation (GTGU)
The GNSS-R tide gauge at the Onsala Space Observatory was installed in the fall of 2011 and has been previ-
ously described by Larson et al. [2013]. The site was installed specifically for GNSS-R purposes and therefore
has a wide view over the sea, covering almost 180∘ in azimuth (cf. Table 1 for azimuth/elevation ranges).
The equipment at the site includes two Leica AR 25 GNSS antennas, one zenith, and one nadir looking. The
nadir-looking antenna is modified to be sensitive for left-hand circularly polarized signals. Both antennas are
mounted on a horizontal pole which allows them to be placed up to 4 m above the mean sea level. Each
antenna is connected to a separate Leica GRX1200 receiver. Thus, it is possible to use the upward looking
installation (called GTGU) for GNSS-R studies using SNR data or investigate sea surface height changes by uti-
lizing the phase difference between the upward and downward looking antenna/receiver pairs. During the
period studied in section 5, data from a colocated pressure tide gauge with a nominal uncertainty of 5 mm
were available. As this tide gauge is only 10 m away from the GNSS-R station, it can be used as a reference to
which GNSS-R solutions can be compared to.
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Table 1. Azimuth/Elevation Ranges and Initial Heights for GTGU and SPBY

Station Elevation Range (deg) Azimuth Range (deg) Initial Height

GTGU 1–14.5 70–260 4 m

SPBY 1–10 280–310 4 m

1–7 310–335

1–10 335–360

In general, it can be stated that the tidal variations at Onsala are relatively small and have a daily peak-to-peak
variation of around 20 cm. However, meteorological effects, in particular local pressure variations that influ-
ence the sea level, are the primary driver for sea level variations at the site. These effects lead to a maximum
peak-to-peak variation of the sea surface height of around 80 cm over the test period.

4.2. Spring Bay GNSS-R Installation (SPBY)
The Spring Bay GNSS-R installation is situated close to the city Spring Bay in Tasmania, Australia, and is
operated by Geoscience Australia. The site was not installed for GNSS-R purposes, but rather for position
monitoring, and has a smaller acceptable azimuth/elevation range than GTGU; see Table 1. Since the equip-
ment at the site only consists of one single-zenith-looking Leica AT504 GG antenna, only SNR analysis is
possible at the site. The antenna is mounted approximately 4 m above the average sea surface and is
connected to a Leica GRX1200 receiver.

There is a colocated acoustic tide gauge at the site which gives one measurement each minute. These mea-
surements are computed as averages from 1 Hz data over a period of 1 min. The standard deviation during
1 min is on average 1.3 cm for the time period studied in this paper.

The peak-to-peak variation of the daily tides at Spring Bay is larger than at Onsala and is approximately 80 cm.
Together with long-periodic effects, the total peak-to-peak variationwas around 1.3m during the test period.

5. Results

To compare with earlier studies at the Onsala GNSS-R tide gauge, cf. section 4.1, the new algorithm, cf.
section 3, was tested with data from 2012, day of year (doy) 273 to 303. These data were previously analyzed
by Löfgren and Haas [2014] both with the Lomb-Scargle algorithm, with height rate corrections, and with the
phase difference method. The authors report standard deviations for the difference when comparing to a
colocated pressure tide gauge of 4.0 cm and 3.2 cm, respectively.

Figure 2. Sea level at Onsala as derived from inverse modeling of the detrended SNR data (red, dashed) and the
reference levels from the colocated tide gauge (black, solid) for a subset of the data used for validation. Since the tide
gauge and the GNSS solution do not have the same reference level, the mean of each of the two data sets has been
removed before plotting.
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Table 2. Comparison of Different GNSS-R Sea Level Solutions for GTGU,
Day of Year 273 to 303, 2012

Standard Mean Absolute

Deviation Difference

(cm) (cm) Correlation

Inverse Modeling

GPS+GLO, L1/L2 1.44 1.13 0.99

GPS+GLO, L1 1.43 1.13 0.99

GPS+GLO, L2 2.00 1.58 0.99

GPS, L1/L2 1.54 1.21 0.99

GPS, L1 1.53 1.21 0.99

GPS, L2 2.32 1.84 0.99

GLONASS, L1/L2 1.68 1.33 0.99

GLONASS, L1 1.69 1.33 0.99

GLONASS, L2 2.24 1.77 0.99

Lomb-Scargle Spectral Analysisa

GPS, L1 4.0 3.2 0.97

GPS, L2 9.0 7.5 0.86

GLONASS, L1 4.7 3.6 0.96

GLONASS, L2 8.9 7.0 0.87

Geodetic Phase Difference Analysisa

GPS, L1 3.5 2.3 0.95

GPS, L2 3.5 2.4 0.95

GLONASS, L1 3.3 2.2 0.96

GLONASS, L2 3.2 2.3 0.96
aResults from Löfgren and Haas [2014]. Values only reported with

millimeter resolution.

In this work, the retrieved sea surface heights are represented as B-spline functions. Therefore, to compare
with measurements from a colocated pressure tide gauge, the B-spline representations are evaluated at the
epochs of the pressure tide gaugemeasurements. The resulting sea level solution is shown for a subset of the
test period in Figure 2, together with the tide gauge values. As reported in Table 2, the standard deviation for
the inverse modeling at GTGU becomes 1.4 cm, which is a significant improvement in precision not only in
respect with the previously used SNR method but also in comparison with the phase difference analysis.

The inverse modeling method was also compared with the Lomb-Scargle spectral method on data from the
GNSS station SPBY in Spring Bay, Australia. The time period for the tests on this site was stipulated by the
presence of a continuous series of data with high temporal resolution and was chosen to be between doy
283 and 324, 2015. Sea level, along with solutions from the compared algorithms, is shown for a subset of the
time period in Figure 3.

In Figure 4 the standard deviation, with respect to the colocated tide gauge, for the full period is presented for
both the inversemodelingmethodpresented in this paper and the Lomb-Scargle spectralmethod. As the site
only has one upward looking antenna, the phase difference method is unfeasible, and only the performance
of the two SNR-methods can be evaluated. The standard deviation between the sea surface heights retrieved
by inverse modeling and the colocated tide gauge is 3.1 cm for the whole period. In comparison, the best
value for the Lomb-Scargle analysis on this data set, which is from the L1 signal fromGLONASS satellites, yields
a standard deviation of 9.8 cm, which is similar to the results presented by Santamaría-Gómez et al. [2015],
where the lowest standard deviation for the whole year of 2013 was found to be 8.5 cm.

As seen from Table 2 and Figure 4, the capability to simultaneously process data from multiple GNSS is
beneficial, as the combination of GPS and GLONASS leads to higher precision than using them separately.
However, combining L1 and L2 signals in a single inversion process did not result in a significantly improved
precision. This shows that it is not the increased amount of data points available in the inversion process that
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Figure 3. Results from pressure tide gauge (black, solid line), inverse modeling using both GLONASS and GPS (red,
dashed line), and different Lomb-Scargle (LSP) solutions (symbols) for the GNSS station SPBY (Spring Bay, Australia).
The mean of each data series has been removed before plotting.

Figure 4. Standard deviation of the different GNSS-R sea level solutions with respect to the Spring Bay tide gauge for
the full period from doy 283 to 324, 2015.
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Figure 5. Standard deviations compared to colocated tide gauges for the GTGU and SPBY stations, using different
number of B-spline nodes, and their spacing in time (upper axis), in the inverse modeling process.

is the origin of the improvement but rather the improved temporal and spatial coverage that using several
GNSS together provides. More satellites mean a higher probability that a GNSS surface reflection is available
within the accepted azimuth/elevation sectors at any given time.

The standard deviation of the two stations for different numbers of B-spline nodes is presented in Figure 5. As
expected, ahigher temporal resolutionatfirst increases theprecisionof the algorithm.However, after a certain
threshold, the precision starts to deteriorate. Such deterioration is a general problem when fitting functions,

Figure 6.Wavelet coherence between the Onsala tide gauge measurements and the sea surface heights retrieved by (left) the inverse modeling method and
(right) the Lomb-Scargle method. The gray mask marks the areas where boundary effects impact the wavelet analysis, and the black contour marks the 5%
significance level against red noise.
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Figure 7.Wavelet coherence between the Spring Bay tide gauge measurements and the sea surface heights retrieved by (left) the inverse modeling method and
(right) the Lomb-Scargle method. The gray mask marks the areas where boundary effects impact the wavelet analysis, and the black contour marks the 5%
significance level against red noise.

also known as overfitting. This threshold occurs at a higher number of B-spline nodes for GTGU, which has
larger azimuth/elevation sectors, than for SPBY. Awider anglemaskmeansmore SNRmeasurements and less,
and shorter, gaps where no data at all are available. This also implies that a higher temporal resolution of the
B-spline model becomes feasible without the risk of overfitting.

The sharp increase in standard deviation that occurs at lower number of nodes at SPBY arises since the small
number of B-spline nodes reduces the ability to resolve the semidiurnal tides that are dominant at Spring Bay.
For GTGU the same increase in standard deviation is not observed as semidiurnal tides are less important at
Onsala than meteorological effects, which dominate the local sea level and occur on longer timescales.

As discussed before, it can be stated that the new inverse modeling strategy outperforms both the
Lomb-Scargle and phase difference methods in terms of smaller standard deviation. Moreover, as shown in
Table 2, higher correlations against measurements from a colocated tide gauge are obtained when using the
inverse modeling approach. Since tides are periodic by nature, it is possible to study more than simple cor-
relations and investigate how well the tide gauge records and the retrieved heights from both the inverse
modeling algorithm and the Lomb-Scargle method agree on different time scales. This is done with wavelet
coherence analysis using a MATLAB implementation based on the work by Grinsted et al. [2004]. The coher-
ence between the sea surface heights retrieved from GNSS-R and the tide gauges are shown in Figures 6
and 7, for GTGU and SPBY, respectively. Since the wavelet analysis requires a regularly sampled signal, the
heights derived from the Lomb-Scargle analysis are resampled using linear interpolation. As this might affect
the coherence on periods shorter than the original spacing of the data, only time scales above the longest
time between two successive Lomb-Scargle solutions are considered here.

From Figures 6 and 7 it is clear that the coherence for the inverse modeling is, in general, higher than for
the Lomb-Scargle solution. In particular, the inverse modeling coherence is preserved for periods down to
6 h, whereas the Lomb-Scargle approach is only capable to resolve spectral components with periods of
8 h or longer. Overall, inverse modeling outperforms the Lomb-Scargle results in terms of coherence on all
time scales.

STRANDBERG ET AL. GNSS-R INVERSE MODELING 1295



Radio Science 10.1002/2016RS006057

Although not discussed here, an analysis of the postfit residuals revealed no systematic effects or signals,
which confirms that the chosen parameterization is suitable tomodel the data. Thus, the presented inversion
strategy appears to a good choice for retrieving sea surface heights from GNSS SNR data.

6. Conclusion and Outlook

The precision of interferometric GNSS-R analysis has been increased by using a new algorithm for retriev-
ing sea surface heights from GNSS SNR data, based on inverse modeling of SNR observations. Tests at two
different sites confirm this increase in precision when comparing against the Lomb-Scargle method and the
dual-receiver method applied to GTGU data.

The precision of the inversion increased when signals from GPS and GLONASS were consistently combined.
However, combining data from L1 and L2 signals did not improve precision. Both findings can be explained
by the fact that better geometric coverage tends to improve the inversion, whereas more data from the same
time and location do not lead to significantly better sea level retrievals. Therefore, adding data from more
GNSS as they become available has the potential to increase the precision of our algorithm, since more avail-
able satellites lead to a higher probability for a satellite to be within the accepted azimuth/elevation ranges
at any given time.

However, even using only one of the signals, the method increases the precision significantly compared to
previously usedmethods. This paves theway for using low-cost GNSS equipment for precise sea level studies.

The number of B-spline nodes used in the inversion model has a significant impact on the precision of the
solution. However, the optimum number of nodes can only be determined with knowledge about local
sea visibility conditions, as well as tidal variations at a particular site. Further studies will show how to
automatically adopt the algorithm for an arbitrary coastal site.

References
Alonso-Arroyo, A., A. Camps, P. Hyuk, D. Pascual, R. Onrubia, and F. Martin (2015), Retrieval of significant wave height and mean sea surface

level using the GNSS-R interference pattern technique: Results from a three-month field campaign, IEEE Trans. Geosci. Remote Sens., 53(6),
3198–3209.

Beckmann, P., and A. Spizzichino (1963), The Scattering of Electromagnetic Waves From Rough Surfaces, Pergamon Press, Oxford, U. K.
Dow, J. M., R. E. Neilan, and C. Rizos (2009), The International GNSS Service in a changing landscape of Global Navigation Satellite Systems,

J. Geod., 83(3), 191–198.
Grinsted, A., J. C. Moore, and S. Jevrejeva (2004), Application of the cross wavelet transform and wavelet coherence to geophysical time

series, Nonlinear Processes Geophys., 11(5–6), 561–566.
Hobiger, T., R. Haas, and J. Löfgren (2014), GLONASS-R: GNSS reflectometry with a Frequency Division Multiple Access-based satellite

navigation system, Radio Sci., 49, 271–282, doi:10.1002/2013RS005359.
Hobiger, T., R. Haas, and J. Löfgren (2016), Software-defined radio direct correlation GNSS reflectometry by means of GLONASS, IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens., doi:10.1109/JSTARS.2016.2529683.
Larson, K. M., J. S. Löfgren, and R. Haas (2013), Coastal sea level measurements using a single geodetic GPS receiver, Adv. Space Res., 51(8),

1301–1310.
Löfgren, J. S., and R. Haas (2014), Sea level measurements using multi-frequency GPS and GLONASS observations, EURASIP J. Adv. Signal

Process., 2014(1), 50.
Löfgren, J. S., R. Haas, H. G. Scherneck, and M. Bos (2011), Three months of local sea level derived from reflected GNSS signals, Radio Sci., 46,

RS0C05, doi:10.1029/2011RS004693.
Löfgren, J. S., R. Haas, and H-G. Scherneck (2014), Sea level time series and ocean tide analysis from multipath signals at five GPS sites in

different parts of the world, J. Geodyn., 80, 66–80.
Millman, K., and M. Aivazis (2011), Python for scientists and engineers, Comput. Sci. Eng., 13(2), 9–12.
Moré, J. J., B. S. Garbow, and K. E. Hillstrom (1980), User Guide for MINPACK-1, Tech. Rep. ANL-80-74, Argonne Natl. Lab., Argonne, Ill.
Nievinski, F. G. (2013), Forward and inverse modeling of GPS multipath for snow monitoring, Doctoral dissertation, Univ. of Colorado,

Boulder, Colo..
Nievinski, F. G., and K. M. Larson (2014a), Forward modeling of GPS multipath for near-surface reflectometry and positioning applications,

GPS Solutions, 18(2), 309–322.
Nievinski, F. G., and K. M. Larson (2014b), Inverse modeling of GPS multipath for snow depth estimation—Part I: Formulation and

simulations, IEEE Trans. Geosci. Remote Sens., 52(10), 6555–6563.
Nievinski, F. G., and K. M. Larson (2014c), Inverse modeling of GPS multipath for snow depth estimation—Part II: Application and validation,

IEEE Trans. Geosci. Remote Sens., 52(10), 6564–6573.
Oliphant, T. (2007), Python for scientific computing, Comput. Sci. Eng., 9(3), 10–20.
Roussel, N., G. Ramillien, F. Frappart, J. Darrozes, A. Gay, R. Biancale, N. Striebig, V. Hanquiez, X. Bertin, and D. Allain (2015), Sea level

monitoring and sea state estimate using a single geodetic receiver, Remote Sens. Environ., 171, 261–258.
Santamaría-Gómez, A., C. Christopher, M. Gravelle, M. King, and G. Wöppelmann (2015), Levelling co-located GNSS and tide gauge stations

using GNSS reflectometry, J. Geod., 89(3), 241–258.
Soulat, F., M. Caparrini, O. Germain, P. Lopez-Dekker, M. Taani, and G. Ruffini (2004), Sea state monitoring using coastal GNSS-R, Geophys. Res.

Lett., 31, L21303, doi:10.1029/2004GL020680.

Acknowledgments
The International GNSS Service
[Dow et al., 2009] is acknowledged
for providing data and products. The
SPBY GNSS data are freely available
and distributed by Geosciences
Australia. Data from the Spring Bay
tide gauge are distributed upon
request by the Australian Bureau of
Meteorology. The GNSS equipment
(receivers and antennas) at Onsala
were funded by the Adlerbertska
Foundation and purchased through
the Leica Geosystems ATHENA
program.

STRANDBERG ET AL. GNSS-R INVERSE MODELING 1296



52



Paper III

Coastal sea ice detection using ground-based GNSS-
R

J. Strandberg et al. (2017). Coastal sea ice detection
using ground-based GNSS-R. IEEE Geoscience and Re-
mote Sensing Letters, in press.



54



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. ??, NO. ?, ?? ?? 1

Coastal sea ice detection using ground-based
GNSS-R
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Abstract—Determination of sea ice extent is important both
for climate modeling and transportation planning. Detection and
monitoring of ice is often done by SAR imagery, but mostly
without any ground truth. For the latter purpose, robust and
continuously operating sensors are required. We demonstrate
that signals recorded by ground-based GNSS receivers can
detect coastal ice coverage on nearby water surfaces. Beside
a description of the retrieval approach, we discuss why GNSS
reflectometry is sensitive to the presence of sea ice. It is shown that
during winter seasons with freezing periods, GNSS-R analysis of
data recorded with a coastal GNSS installation clearly shows the
occurrence of ice in the bay where this installation is located.
Thus, coastal GNSS installations could be promising sources of
ground truth for sea ice extent measurements.

Index Terms—GNSS-R, sea ice, Global Navigation Satellite
System, reflectometry, SNR, inverse modeling

I. INTRODUCTION

MEASUREMENTS of sea ice extent provide important
input for climate models and monitoring [1] as well

as for studies of ecological systems [2]. They also con-
tribute crucial information for human activities such as marine
transportation in the arctic [3]. Usually, the ice extent is
measured with SAR imaging techniques [4]. However, as ice
and water can have very similar signatures on SAR images [5],
distinguishing the two states can be difficult. Furthermore, ice
growth starts near the coastline [6] where the resolution of
satellite image data is often coarse. Under these conditions,
ground truth data are important as they can be used as
reference for SAR measurements, as well as provide long term
reliable time series for climate research.

Reflectometry measurements of signals from Global Navi-
gation Satellite Systems (GNSS) have been used for several
years to observe sea level variations [7], soil moisture [8],
and other geophysical parameters [9], [10]. GNSS multipath
is a signal of opportunity which for high precision GNSS
applications is usually considered an error source [11], but
it contains useful geometric and physical information and is
freely available for many stations around the world [12].

An earlier attempt using ground-based GNSS-reflectometry
could not significantly detect the presence of sea ice [13].
However, the primary goal of the study was to measure ocean
tides in the arctic and sea ice detection was only done by
comparing measured sea surface heights with heights predicted
from an ocean model. While the authors briefly discuss that

The authors are with the Department of Space, Earth and Environment,
Chalmers University of Technology. Corresponding author: Joakim Strand-
berg (joakim.strandberg@chalmers.se)

Manuscript received December ???, 2016.

high coherence of the reflected signals and the presence of ice
coincides they do not draw any conclusions on how to use it
to accurately detect ice. In the following sections we introduce
a novel approach of detecting sea ice with common geodetic
GNSS receivers, based on inverse modeling of signal to noise
ratio (SNR) patterns of the reflected signals.

II. EXTRACTION OF REFLECTOR PROPERTIES FROM SNR
MEASUREMENTS

Normally GNSS receivers log, beside code and carrier phase
observations, also the SNR. Assuming that the acquisition
is affected by interference coming from a single horizontal
reflecting surface, the SNR time series of a satellite passage
can be separated into a slowly varying and a high frequency
part. The latter, referred to as δSNR, varies with elevation ε
as

δSNR = A cos

(
4πh

λ
sin ε+ ϕ

)
, (1)

where λ denotes the carrier wavelength, according to [14].
The height of the antenna above the reflector is denoted by h,
and ϕ is a constant phase offset. The elevation angles ε are
already corrected for atmospheric bending in accordance to
the empirical model described in [15] and thus allow to invert
SNR interference information with the correct geometry at
the GNSS ground station. [16] extended the model including
properties of the reflection, leading to

δSNR =

[
C1 sin

(
4πh

λ
sin ε

)
+ C2 cos

(
4πh

λ
sin ε

)]

× exp
(
−4k2γsin2 ε

)
,

(2)

where k is the wave number, C1 and C2 determine the
amplitude and the phase of the sinusoid, and γ relates to
properties of the reflecting surface. This functional model
is used in a non-linear least-squares adjustment process to
retrieve h, C1, C2, and γ. Table I describes the parametrization
of the variables that are fitted in the inversion process. The
actual inversion is performed as a combined solution, including
all GPS and GLONASS data available at a site. As described
by [16], data from a period of three days are processed together
and the results of the middle day are then used for further
analysis. This sliding window processing scheme allows to
obtain stable, smooth and continuous time series of the target
parameters.

One can expect that the strength of the interfering signal
changes depending on the shape and electromagnetic prop-
erties of the reflector. Thus, the estimated amplitudes A =√
C2

1 + C2
2 will contain information about these properties.
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TABLE I
PARAMETERIZATION OF THE INVERSE MODEL

Parameter Temporal resolution
C1, C2 One value for each GNSS and frequency per 72 ha
γ One value per 72 ha
h Spline function with nodes every 2 hours
aData are taken with overlap, effectively
leading to one parameter value per 24 h.

However, one has to be aware that A varies also with satellite
system and frequency, which makes it difficult to interpret
the obtained values in an unbiased sense. The phase offset
ϕ = arctan

(
C1

C2

)
, which is the main parameter for GNSS-

R based soil moisture studies [8], is not considered in the
following as no significant relation to ice state was found.

In contrast, the parameter γ turns out to be better suited
for deducing the physical state of the reflecting water surface.
In theory, the coherence of the reflected signal decays with
satellite elevation and roughness of the reflecting surface as the
last term in Eq. (2): exp

(
−4k2γsin2 ε

)
, where γ corresponds

to the height variance of the reflector [17]. However, there
are various unmodeled elevation-dependent effects, such as
those related to the dielectric properties of the reflector and
the antenna gain [18], which impact the interference amplitude
and therefore the damping of the oscillations. Therefore, the
retrieved parameter γ will not directly correspond to the rough-
ness of the surface. Instead it will have contributions from all
these effects, and thus interpreting γ as variance of the surface
is inadvisable. But as the antenna gain pattern is constant
over time, and both roughness and dielectric properties change
upon ice formation, it is expected that γ will also change
significantly when ice is formed. Thus, following the approach
of [16], inversion of SNR data from coastal GNSS-R sites is
expected to provide not only time series of sea surface heights,
but also information about whether the water surface is liquid
or frozen.

III. EXPERIMENT SETUP

SNR data from GNSS signals were collected at the perma-
nent coastal research installation GTGU at the Onsala Space
Observatory, Sweden, which consists of a standard LEICA
AR25 RHCP antenna and a LEICA GRX1200 receiver. The
GNSS receiver was configured to collect data of both GPS and
GLONASS with 1 Hz sampling frequency. For the subsequent
GNSS-R data processing, a sky mask was used to allow
only data between 70◦ and 260◦ in azimuth and below 15◦

elevation, which ensures that only tracks from the sea surface
are used in the processing.

Coherent multipath signals are effectively collected from an
area often approximated by the first Fresnel zone [19], with the
specular point in the center. Considering that the combination
of GPS and GLONASS leads to many different ground tracks,
the area around the GNSS installation is sampled well, both
in space and time.

During the winters of 2012 and 2013, regular visual in-
spection confirmed that the bay where GTGU is located was
completely covered by ice during certain periods (see Fig. 1a).

c) Coastal environment at Onsala Space Observatory, 22 January 2016

a) GTGU, 6 February 2012 b) Ice map, 6 February 2012

10 km

Gothenburg

GTGU

Ice

Fig. 1. a) Photo of the GTGU installation on February 6, 2012. At this time
the bay was completely covered by sea ice. b) Ice map provided by SMHI for
February 6, 2012, with the location of the GTGU GNSS installation marked.
c) Panorama of the coastal environment outside Onsala Space Observatory on
January 22, 2016, when the sea was partially covered by ice.

This allows for studying the effect of sea ice on reflected
GNSS signals. The winters of 2014 and 2015 were ice-
free, and thus are only used as a reference for open water
conditions. Finally, in 2016 the temperatures dropped only for
a shorter period, not enough to freeze the bay completely, but
only leading to the formation of ice floes (Fig. 1c).

Complementary to visual inspection, a meteorological sen-
sor was available in proximity of the test site. In addition,
precipitation and snow depth data for the above mentioned pe-
riods were collected from the official Swedish Meteorological
and Hydrological Institute (SMHI) weather station Onsala D,
which is located roughly 2 km away from the GNSS station.
For validation purposes, ice charts provided by SMHI were
also used (c.f. Fig. 1b).

IV. RESULTS

The damping parameter γ was extracted from SNR data
recorded in the winter seasons of 2012 and 2013 using the
inversion algorithm described in Section II. As mentioned
before, the damping is also affected by different parameters
which are not related to the surface characteristics. Thus, the
damping coefficients were normalized by the mean damping
value of the ice-free winter in 2015, providing a relative damp-
ing factor γrel = γ/γ2015. This factor can be expected to contain
information related to changes of the physical properties of the
reflector. It has been confirmed that during ice-free periods
the relative damping stays close to 1.0 and varies within the
range γrel ∈ [0.92, 1.09]. Any significantly smaller value of
γrel is thus expected to indicate a state transition as both
the change in permittivity and the smoother surface of newly
formed ice increases the power of the coherent reflections at
higher elevations [18], i.e. less damping.

Time series of the resulting parameter are presented in
Fig. 2, together with temperature and precipitation data from
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Fig. 2. Time series of damping coefficients (blue dots) and a 12 h running mean of the air temperature (red line) for periods of the winters of a: 2012, b:
2013 and c: 2016. The damping coefficient is relative to the average value of the ice-free winter of 2015. The average freezing temperature of sea water near
GTGU, i.e. −1.4 ◦C, is marked for reference, and the shaded periods correspond to the times when ice maps by SMHI reports ice coverage outside Onsala.
The two black circles correspond to the dates when the photos of Figure 1 were taken. The lower plots show the rain equivalent of the snow/rain fall (gray),
as well as the accumulated snow depth (green).

the nearby meteorological stations. It can be noticed that
around day of year (DOY) 32, 2012, the relative damping
parameter decreases by more than 60%. After this sudden drop
of γrel, the damping stays at a low value for 20 days. Photos
taken during this period reveal that the bay was completely
covered by a sheet of flat ice (Fig. 1a). The decrease in
damping is much larger than the normal variability during ice-
free periods, which indicates that the damping coefficient is
affected by the ice formation.

Other than visual inspection, one can also conclude on the
presence of ice by studying temperature time series. The exact
freezing point of sea water depends on the salinity. From
time series provided by SMHI, the average salinity in surface
layers of sea outside GTGU is 25h, indicating a freezing
temperature of seawater of −1.4 ◦C [20]. Since no water
temperature measurements were available, we used locally
recorded air temperature as a proxy, considering that there is a
time lag between water and air temperatures [21]. As presented
in Fig. 2, the air temperature is below the freezing temperature
of sea water for several days before the relative damping γrel
drops significantly. The effect of water as a temperature buffer,
i.e. a time lag between the air temperature decrease and the
freezing [21], is thus clearly visible in the figure.

Ice maps by SMHI were also used for validation. The areas
shaded in red in Fig. 2 correspond to the time periods when
the ice maps indicate ice of any kind on the sea west of GTGU
(see Fig. 1). For the winter of 2012, the reported ice coverage
corresponds closely in time to the period of decreased signal
damping. The slight discrepancy at the end of the ice period
can most likely be explained by the low spatial resolution of
the ice charts.

The pattern seen in 2012 repeats in the time series for 2013
in Fig. 2. Again, a few days after the temperature drops below
the freezing point for sea water, the damping coefficient also
decreases significantly (cf. DOY 19, 2013), indicating that
there was ice in the bay at that time. For 2013, the ice maps

do not show any ice coverage in the area until DOY 24, a
few days after the damping indicates ice. No ice coverage in
the area has been reported after DOY 36, coinciding with the
damping returning to normal values. Differences between the
epochs when the damping drops and when the ice maps report
ice coverage can also be explained by local topography and
the coarse resolution of the maps. Especially, as the bay at the
observatory is sheltered from waves by a few islets, ice can
form there earlier than on the surrounding open sea.

In both years, after a clear period of ice the damping
increased slightly, at day of year 44 and 27 respectively,
following on events of snowfall. This suggests that snow
which had piled up on the sea ice changing the surface
properties, thus increasing the damping factor γrel. Later,
as the temperature rises the snow melts, which temporarily
changes the properties of the surface before the underlying
ice also melts and the damping returns to pre-ice levels again.

During the winter of 2016 the weather conditions were not
cold enough to freeze the bay completely. However, there
was an intermediate state with pancake ice and frazil ice in-
between (Fig. 2c). Even though the bay did not completely
freeze, there is still some variability visible in the damping
time series. As presented in Fig. 2, the damping drops by
around 30% during the winter of 2016. This is less than for
the winters of 2012 and 2013 but is still a significant change,
showing that the obtained damping parameter is sensitive even
to partial freezing.

The correlation between damping and presence of ice is
also evident from Fig. 3 which depicts a scatter plot of
mean temperature versus relative damping from GNSS-R for
the winters of 2012 and 2013, for which freezing occurred.
However, as noted previously, there is a time lag between
the drop in temperature and in damping in Fig. 2, since it
takes some time for the sea water to freeze. Therefore, the
temperature in Fig. 3 is offset by the time lag that maximizes
the correlation between the damping and the temperature.
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These time lags are found to be 8.2 days for 2012, and
8.8 days for 2013. The figure depicts a clear population of
points in the upper right corner corresponding to ice-free days,
and a spread of points stretching to the lower left corner of
the plot containing the days where ice covered the bay. In
between there is a transition zone containing damping values
related to snow-covered ice, floating ice sheets and partially
frozen water surfaces. Especially worth noticing is that relative
damping coefficients above 0.9 only occur for temperatures
above −1.4 ◦C and that the low values only occur for negative
temperatures, strongly supporting the conclusion that damping
is a good indicator for the presence of ice.
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Fig. 3. Scatter plot of daily mean air temperatures and relative damping
coefficients. The time of the temperature readings in the figure is offset by
the time lag that gives the maximum correlation between the damping and
temperature time series: 8.2 days for 2012, and 8.8 days for 2013. A black
border indicates dates when the SMHI ice maps show ice at Onsala. The color
of the shading is determined by temperature.

V. ICE-RELATED INFORMATION FROM OTHER GNSS-R
PARAMETERS

As already mentioned in Section II also the other estimated
parameters (cf. Tab. I) might be useful for studying the
freezing state of water nearby GNSS installations.

Concerning the use of interference amplitude information,
one has to be aware that signal strength varies with satellite
system and frequency, which makes it necessary to estimate
individual values for each combination of GPS and GLONASS
as well as L1 and L2. In order to avoid signatures of site-
specific characteristics, relative amplitudes Arel = A/Aice free

were derived from the GTGU inversion results, where Aice free

was computed for each combination of satellite system and
frequency. The upper plots in Fig. 4 depict time series of
these relative amplitudes with the period of ice marked.
Periods of ice coverage can be identified by higher values
of Arel. However, compared to Fig. 2 the response of the
amplitude is less pronounced, especially during the transition

period. Moreover, the magnitude of the amplitude change
is depending on satellite system and frequency and reveals
different patterns, in particular for the 2013 study period. Thus,
it can be concluded that the estimated amplitudes contain some
information about the freeze state, but in general can not be
interpreted as straightforward as the damping values.

VI. SUMMARY AND DISCUSSION

The method presented in this paper, shows a clear capac-
ity to detect the presence of ice around the GNSS station
GTGU, using only the elevation dependent damping of SNR
oscillations. The retrieved damping parameter time series,
which contains contributions from both surface roughness and
permittivity, contain a period of significantly lower values,
coinciding with periods of sea ice in the measurement area.
This distinct behavior of the signal in the presence of ice can
be used for sea ice detection at coastal GNSS stations.

Automatic detection of sea ice is a promising new applica-
tion of coastal GNSS reflectometry, especially since publicly
distributed GNSS data are available for many stations around
the world. Whereas most of them are located inland, several
are close enough to the coast to be useful for ice detection. Our
results also show that it is possible to detect even intermediate
ice formation. Ice extent is usually monitored using active
microwave sensors. For example SAR instruments have been
proven to be very efficient for mapping ice velocity and ice
types. Thus, ground-based GNSS-R can be seen as a comple-
mentary tool that provides data where those sensors usually
have difficulties, i.e. close to the coast where existing networks
of GNSS receiver could provide the along-coast extent of sea
ice. In addition, GNSS sites are operating continuously over
decades without instrumental changes. Hence, time series of
coastal ice from GNSS-R can be used as ground-truth for
the validation of satellite based sensors or as an additional
constraining input to climatological models. This means that
coastal GNSS-R has the potential to be a new source of
information for oceanography, hydrology and climatology.

In general, the usage of the presented method opens up for
new opportunities with ground-based GNSS-R. It is expected
that the method presented here will be valuable also for
other usages of GNSS-R. Also we can expect that if more
effects are modeled, such as antenna gain and atmospheric
effects, even more parameters could be retrieved with this
method. Finally, the detection of ice from GNSS-R is useful
as it opens up for further studies on the effect of ice on
GNSS SNR patterns and signal quality. For example one
could combine the knowledge of the presence of ice with
the geometric information obtained from GNSS-R inversion
and determine ice thickness or snow coverage. In order to
illustrate this idea, we refer to the plots in the lower part
of Fig. 4 which depict time-series of reflector height for the
ice periods discussed before. Comparing these values with
tide gauge data or other sensors would allow to draw further
conclusions. Unfortunately, the co-located pressure tide gauge
at Onsala was not working properly during the study period
2012–2013 so that distinctions between ice and snow-coverage
could only be made based on the information from visual
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inspection around the site. This drawback is expected to be
overcome in the future, since a newly-built tide gauge and
further additional sensors have been deployed recently in the
proximity of the GTGU site, allowing for further ice and snow
related studies during freeze-periods.
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